If it's not what You are looking for type in the equation solver your own equation and let us solve it.
8c^2-30-43c=0
a = 8; b = -43; c = -30;
Δ = b2-4ac
Δ = -432-4·8·(-30)
Δ = 2809
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{2809}=53$$c_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-43)-53}{2*8}=\frac{-10}{16} =-5/8 $$c_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-43)+53}{2*8}=\frac{96}{16} =6 $
| (2x-1)/5-1=10 | | 2(3c-6)-2c=4(c+4) | | 4(2y-5)=56 | | -30=8w+2 | | 5x+4=5x+4(x-7) | | 3(2x+7)=11x+7-5x+14 | | 1/2-x=-4 | | -8q=-7-9q | | 8x-28=15x | | 9+x+4x-24=-4 | | 209=11x | | 57(3x+34)=50 | | (5x+15)+(3x-3)=1 | | 12x+22=142 | | -2(-4x+7)=2(-x-8)-(x+20) | | -5-9n=-6n-5 | | -1-5j=-71 | | 6x=–66 | | 6.7g+6=1.7g+16 | | 3x+1=5x−9 | | 11.2+8.2+4q=-0.8 | | 32(11x+5)=15 | | 16k−12k=16 | | -3x+1=5x-23 | | F(x)=10x2 | | 2x=6=3x+9-3 | | -3b+6=-6 | | 3x+6-2x=-2x | | -6=-2(4+o) | | 20.3=x+x^2 | | 5x+16x-20=12x+7 | | 9t+8=-10+6t |